ADDLP LDX

INDEX RESW
ALPHA RESW
BETA RESW

ZERO WORD
K300 WORD
THREE WORD

ADDLP LDA

ALPHA RESW
BETA RESW

Figure 1.5
(b) SIC/XE.

ZERO
INDEX
INDEX
ALPHA, X
BETA, X
GAMMA, X
INDEX
THREE
INDEX
K300
ADDLP

100
100
100

300

#3
#300

#0
ALPHA, X
BETA, X
GAMMA, X
S,X

X,T
ADDLP

100
100
100

Background

INITTALIZE INDEX VALUE TO 0

LOAD INDEX VALUE INTO REGISTER X
LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300
LOOP IF INDEX IS LESS THAN 300

ONE-WORD VARIABLE FOR INDEX VALUE
ARRAY VARIABLES--100 WORDS EACH

ONE-WORD CONSTANTS

@)

INITIALIZE REGISTER S TO 3
INITIALIZE REGISTER T TO 300
INITIALIZE INDEX REGISTER TO 0

LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300

LOOP IF INDEX VALUE IS LESS THAN 300

ARRAY VARIABLES--100 WORDS EACH

(b)

Sample indexing and looping operations for (a) SIC and

19



20

System Software

ALPHA and BETA, storing the results in the elements of GAMMA. The gen-
eral principles of looping and indexing are the same as previously discussed.
However, the value in the index register must be incremented by 3 for each
iteration of this loop, because each iteration processes a 3-byte (i.e., one-word)
element of the arrays. The TIX instruction always adds 1 to register X, so it is
not suitable for this program fragment. Instead, we use arithmetic and com-
parison instructions to handle the index value.

In Fig. 1.5(a), we define a variable INDEX that holds the value to be used
for indexing for each iteration of the loop. Thus, INDEX should be 0 for the
first iteration, 3 for the second, and so on. INDEX is initialized to 0 before the
start of the loop. The first instruction in the body of the loop loads the current
value of INDEX into register X so that it can be used for target address calcula-
tion. The next three instructions in the loop load a word from ALPHA, add the
corresponding word from BETA, and store the result in the corresponding
word of GAMMA. The value of INDEX is then loaded into register A,
incremented by 3, and stored back into INDEX. After being stored, the new
value of INDEX is still present in register A. This value is then compared to
300 (the length of the arrays in bytes) to determine whether or not to terminate
the loop. If the value of INDEX is less than 300, then all bytes of the arrays
have not yet been processed. In that case, the JLT instruction causes a jump
back to the beginning of the loop, where the new value of INDEX is loaded
into register X.

This particular loop is cumbersome on SIC, because register A must be
used for adding the array elements together and also for incrementing the index
value. The loop can be written much more efficiently for SIC/XE, as shown in
Fig. 1.5(b). In this example, the index value is kept permanently in register X.
The amount by which to increment the index value (3) is kept in register S,
and the register-to-register ADDR instruction is used to add this increment to
register X. Similarly, the value 300 is kept in register T, and the instruction
COMPR is used to compare registers X and T in order to decide when to
terminate the loop.

Figure 1.6 shows a simple example of input and output on SIC; the same
instructions would also work on SIC/XE. (The more advanced input and out-
put facilities available on SIC/XE, such as I/O channels and interrupts, are
discussed in Chapter 6.) This program fragment reads 1 byte of data from
device F1 and copies it to device 05. The actual input of data is performed
using the RD (Read Data) instruction. The operand for the RD is a byte in
memory that contains the hexadecimal code for the input device (in this case,
F1). Executing the RD instruction transfers 1 byte of data from this device into
the rightmost byte of register A. If the input device is character-oriented (for
example, a keyboard), the value placed in register A is the ASCII code for the
character that was read.



Background

The READ subroutine itself consists of a loop. Each execution of this loop
reads 1 byte of data from the input device, using the same techniques illus-
trated in Fig. 1.6. The bytes of data that are read are stored in a 100-byte buffer
area labeled RECORD. The indexing and looping techniques that are used in
storing characiers in this buffer are essentially the same as those illustrated in
Fig. 1.4(a).

Figure 1.7(b) shows the same READ subroutine as it might be written for
SIC/XE. The main differences from Fig. 1.7(a) are the use of immediate
addressing and the TIXR instruction, as was illustrated in Fig. 1.4(a).

1.4 TRADITIONAL (CISC) MACHINES

This section introduces the architectures of two of the machines that will be
used as examples later in the text. Section 1.4.1 describes the VAX architecture,
and Section 1.4.2 describes the architecture of the Intel x86 tamily of processors.

The machines described in this section are classified as Complex Instruc-
tion Set Computers (CISC). CISC machines generally have a relatively large
and complicated instruction set, several different instruction formats and
lengths, and many different addressing modes. Thus the implementation of
such an architecture in hardware tends to be complex.

You may want to compare the examples in this section with the Reduced
Instruction Set Computer (RISC) examples in Section 1.5. Further discussion of
CiSC versus RISC designs can be found in Tabak (1995).

1.4.1 VAX Architecture

The VAX family of computers was introduced by Digital Equipment
Corporation (DEC) in 1978. The VAX architecture was designed for compati-
bility with the earlier PDP-11 machines. A compatibility mode was provided at
the hardware level so that many PDP-11 programs could run unchanged on the
VAX. It was even possible for PDP-11 programs and VAX programs to share
the same machine in a multi-user environment.

This section summarizes some of the main characteristics of the VAX archi-
tecture. For further information, see Baase (1992).

Memory

The VAX memory consists of 8-bit bytes. All addresses used are byte
addresses. Two consecutive bytes form a word; four bytes form a longword;
eight bytes form a quadword; sixteen bytes form an octaword. Some operations



24

System Software

are more efficient when operands are aligned in a particular way—for exam-
ple, a longword operand that begins at a byte address that is a multiple of 4.

All VAX programs operate in a virtual address space of 232 bytes. This virtual
memory allows programs to operate as though they had access to an
extremely large memory, regardless of the amount of memory actually present
on the system. Routines in the operating system take care of the details of
memory management. We discuss virtual memory in connection with our
study of operating systems in Chapter 6. One half of the VAX virtual address
space is called system space, which contains the operating system, and is shared
by all programs. The other half of the address space is called process space, and
is defined separately for each program. A part of the process space contains
stacks that are available to the program. Special registers and machine instruc-
tions aid in the use of these stacks.

Registers

There are 16 general-purpose registers on the VAX, denoted by RO through
R15. Some of these registers, however, have special names and uses. All gen-
eral registers are 32 bits in length. Register R15 is the program counter, also
called PC. It is updated during instruction execution to point to the next
instruction byte to be fetched. R14 is the stack pointer SP, which points to the
current top of the stack in the program’s process space. Although it is possible
to use other registers for this purpose, hardware instructions that implicitly
use the stack always use SP. R13 is the frame pointer FP. VAX procedure call
conventions build a data structure called a stack frame, and place its address
in FP. R12 is the argument pointer AP. The procedure call convention uses AP to
pass a list of arguments associated with the call.

Registers R6 through R11 have no special functions, and are available for gen-
eral use by the program. Registers RO through R5 are likewise available for
general use; however, these registers are also used by some machine instructions.

In addition to the general registers, there is a processor status longword
(PSL), which contains state variables and flags associated with a process. The
PSL includes, among many other items of information, a condition code and a
flag that specifies whether PDP-11 compatibility mode is being used by
a process. There are also a number of control registers that are used to support
various operating system functions.

Data Formats

Integers are stored as binary numbers in a byte, word, longword, quadword,
or octaword; 2’s complement representation is used for negative values.
Characters are stored using their 8-bit ASCII codes.



Background

INLOOP D INDEV TEST INPUT DEVICE
JEQ INLOOP LOOP UNTIL DEVICE IS READY
RD INDEV READ ONE BYTE INTO REGISTER A
STCH DATA STORE BYTE THAT WAS READ
OUTLP TD OUTDEV TEST OUTPUT DEVICE
JEQ OUTLP LOOP UNTIL DEVICE IS READY
LDCH DATA LOAD DATA BYTE INTO REGISTER A
WD OUTDEV WRITE ONE BYTE TO OUTPUT DEVICE
INDEV BYTE X'F1’ INPUT DEVICE NUMBER
OUTDEV BYTE X057 OUTPUT DEVICE NUMBER
DATA RESB 1 ONE-BYTE VARIABLE

Figure 1.6 Sample input and output operations for SIC.

Before the RD can be executed, however, the input device must be ready to
transmit the data. For example, if the input device is a keyboard, the operator
must have typed a character. The program checks for this by using the TD
(Test Device) instruction. When the TD is executed, the status of the addressed
device is tested and the condition code is set to indicate the result of this
test. If the device is ready to transmit data, the condition code is set to “less
than”; if the device is not ready, the condition code is set to “equal.” As Fig. 1.6
illustrates, the program must execute the TD instruction and then check the
condition code by using a conditional jump. If the condition code is “equal”
(device not ready), the program jumps back to the TD instruction. This two-
instruction loop will continue until the device becomes ready; then the RD will
be executed.

Output is performed in the same way. First the program uses TD to check
whether the output device is ready to receive a byte of data. Then the byte to
be written is loaded into the rightmost byte of register A, and the WD (Write
Data) instruction is used to transmit it to the device.

Figure 1.7 shows how these instructions can be used to read a 100-byte
record from an input device into memory. The read operation in this example
is placed in a subroutine. This subroutine is called from the main program by
using the JSUB (Jump to Subroutine) instruction. At the end of the subroutine
there is an RSUB (Return from Subroutine) instruction, which returns control
to the instruction that follows the JSUB. o

21



22

System Software

JSUB

READ LDX
RLOOP D
JEQ

STCH
TIX

RSUB

INDEV BYTE
RECORD RESB

ZERO WORD
K100 WORD

JSUB

RLOOP D

TIXR

RSUB

INDEV BYTE
RECORD RESB

READ

ZERO
INDEV

INDEV
RECORD, X
K100
RLOCP

X'F1’
100

100

#0

#100
INDEV
RLOOP
INDEV
RECORD, X
T

RLOOP

X'F1l’
100

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGISTER TO 0
TEST INPUT DEVICE

LOOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD
ONE-WORD CONSTANTS

(a)

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGISTER TO 0O
INITIALIZE REGISTER T TO 100

TEST INPUT DEVICE

LOOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD

(b)

Figure 1.7 Sample subroutine call and record input operations for
(a) SIC and (b) SIC/XE.



Background

There are four different floating-point data formats on the VAX, ranging in
length from 4 to 16 bytes. Two of these are compatible with those found on the
PDP-11, and are standard on all VAX processors. The other two are available
as options, and provide for an extended range of values by allowing more bits
in the exponent field. In each case, the principles are the same as those we dis-
cussed for SIC/XE: a floating-point value is represented as a fraction that is to
be multiplied by a specified power of 2.

VAX processors provide a packed decimal data format. In this format, each
byte represents two decimal digits, with each digit encoded using 4 bits of
the byte. The sign is encoded in the last 4 bits. There is also a numeric format that
is used to represent numeric values with one digit per byte. In this format, the
sign may appear either in the last byte, or as a separate byte preceding the first
digit. These two variations are called trailing numeric and leading separate numeric.

VAX also supports queues and variable-length bit strings. Data structures
such as these can, of course, be implemented on any machine; however, VAX
provides direct hardware support for them. There are single machine instructions
that insert and remove entries in queues, and perform a variety of operations on
bit strings. The existence of such powerful machine instructions and complex
primitive data types is one of the more unusual features of the VAX architecture.

Instruction Formats

VAX machine instructions use a variable-length instruction format. Each
instruction consists of an operation code (1 or 2 bytes) followed by up to six
operand specifiers, depending on the type of instruction. Each operand specifier
designates one of the VAX addressing modes and gives any additional infor-
mation necessary to locate the operand. (See the description of addressing
modes in the following section for further information.)

Addressing Modes

VAX provides a large number of addressing modes. With few exceptions, any
of these addressing modes may be used with any instruction. The operand
itself may be in a register (register mode), or its address may be specified by a
register (register deferred mode). If the operand address is in a register, the reg-
ister contents may be automatically incremented or decremented by the
operand length (autoincrement and autodecrement modes). There are several
base relative addressing modes, with displacement fields of different lengths;
when used with register PC, these become program-counter relative modes.
All of these addressing modes may also include an index register, and many of
them are available in a form that specifies indirect addressing (called deferred

25



26

System Software

modes on VAX). In addition, there are immediate operands and several
special-purpose addressing modes. For further details, see Baase (1992).

Instruction Set

One of the goals of the VAX designers was to produce an instruction set that is
symmetric with respect to data type. Many instruction mnemonics are formed
by combining the following elements:

1. A prefix that specifies the type of operation.
2. A suffix that specifies the data type of the operands.

3. A modifier (on some instructions) that gives the number of operands
involved.

For example, the instruction ADDW?2 is an add operation with two operands,
each a word in length. Likewise, MULL3 is a multiply operation with three
longword operands, and CVTWL specifies a conversion from word to long-
word. (In the latter case, a two-operand instruction is assumed.) For a typical
instruction, operands may be located in registers, in memory, or in the instruc-
tion itself (immediate addressing). The same machine instruction code is used,
regardless of operand locations.

VAX provides all of the usual types of instructions for computation, data
movement and conversion, comparison, branching, etc. In addition, there are a
number of operations that are much more complex than the machine instruc-
tions found on most computers. These operations are, for the most part, hard-
ware realizations of frequently occurring sequences of code. They are
implemented as single instructions for efficiency and speed. For example, VAX
provides instructions to load and store multiple registers, and to manipulate
queues and variable-length bit fields. There are also powerful instructions for
calling and returning from procedures. A single instruction saves a designated
set of registers, passes a list of arguments to the procedure, maintains the stack,
frame, and argument pointers, and sets a mask to enable error traps for arith-
metic operations. For further information on all of the VAX instructions, see
Baase (1992).

Input and Output

Input and output on the VAX are accomplished by 1/0 device controllers.
Each controller has a set of contrel/status and data registers, which are
assigned locations in the physical address space. The portion of the address
space into which the device controller registers are mapped is called I/O space.



Background

is stored at the lowest-numbered address. (This is commonly called little-endian
byte ordering, because the “little end” of the value comes first in memory.)

Integers can also be stored in binary coded decimal (BCD). In the unpacked
BCD format, each byte represents one decimal digit. The value of this digit is
encoded (in binary) in the low-order 4 bits of the byte; the high-order bits are
normally zero. In the packed BCD format, each byte represents two decimal
digits, with each digit encoded using 4 bits of the byte.

There are three different floating-point data formats. The single-precision
format is 32 bits long. It stores 24 significant bits of the floating-point value,
and allows for a 7-bit exponent (power of 2). (The remaining bit is used to
store the sign of the floating-point value.) The double-precision format is
64 bits long. It stores 53 significant bits, and allows for a 10-bit exponent. The
extended-precision format is 80 bits long. It stores 64 significant bits, and
allows for a 15-bit exponent.

Characters are stored one per byte, using their 8-bit ASCII codes. Strings
may consist of bits, bytes, words, or doublewords; special instructions are
provided to handle each type of string.

Instruction Formats

All of the x86 machine instructions use variations of the same basic format.
This format begins with optional prefixes containing flags that modify the
operation of the instruction. For example, some prefixes specify a repetition
count for an instruction. Others specify a segment register that is to be used
for addressing an operand (overriding the normal default assumptions made
by the hardware). Following the prefixes (if any) is an opcode (1 or 2 bytes);
some operations have different opcodes, each specifying a different variant of
the operation. Following the opcode are a number of bytes that specify the
operands and addressing modes to be used. (See the description of addressing
modes in the next section for further information.)

The opcode is the only element that is always present in every instruction.
Other elements may or may not be present, and may be of different lengths,
depending on the operation and the operands involved. Thus, there are a large
number of different potential instruction formats, varying in length from
1 byte to 10 bytes or more.

Addressing Modes

The x86 architecture provides a large number of addressing modes. An
operand value may be specified as part of the instruction itself (immediate
mode), or it may be in a register (register mode).

29



30

System Software

Operands stored in memory are often specified using variations of the gen-
eral target address calculation

TA = (base register) + (index register) * (scale factor) + displacement

Any general-purpose register may be used as a base register; any general-
purpose register except ESP can be used as an index register. The scale factor may
have the value 1, 2, 4, or 8, and the displacement may be an 8-, 16-, or 32-bit
value. The base and index register numbers, scale, and displacement are encoded
as parts of the operand specifiers in the instruction. Various combinations of
these items may be omitted, resulting in eight different addressing modes. The
address of an operand in memory may also be specified as an absolute location
(direct mode), or as a location relative to the EIP register (relative mode).

Instruction Set

The x86 architecture has a large and complex instruction set, containing more
than 400 different machine instructions. An instruction may have zero, one, two,
or three operands. There are register-to-register instructions, register-to-memory
instructions, and a few memory-to-memory instructions. In some cases,
operands may also be specified in the instruction as immediate values.

Most data movement and integer arithmetic instructions can use operands
that are 1, 2, or 4 bytes long. String manipulation instructions, which use repeti-
tion prefixes, can deal directly with variable-length strings of bytes, words, or
doublewords. There are many instructions that perform logical and bit manipu-
lations, and support control of the processor and memory-management systems.

The x86 architecture also includes special-purpose instructions to perform
operations frequently required in high-level programming languages—for
example, entering and leaving procedures and checking subscript values
against the bounds of an array.

Input and Output

Input is performed by instructions that transfer one byte, word, or doubleword
at a time from an 1/0 port into register EAX. Output instructions transfer one
byte, word, or doubleword from EAX to an I/O port. Repetition prefixes allow
these instructions to transfer an entire string in a single operation.



Background

No special instructions are required to access registers in /O space. An
I/0 device driver issues commands to the device controller by storing values
into the appropriate registers, exactly as if they were physical memory loca-
tions. Likewise, software routines may read these registers to obtain status
information. The association of an address in I/O space with a physical register
in a device controller is handled by the memory management routines.

1.4.2 Pentium Pro Architecture

The Pentium Pro microprocessor, introduced near the end of 1995, is the latest
in the Intel x86 family. Other recent microprocessors in this family are the
80486 and Pentium. Processors of the x86 family are presently used in a major-
ity of personal computers, and there is a vast amount of software for these
processors. It is expected that additional generations of the x86 family will be
developed in the future.

The various x86 processors differ in implementation details and operating
speed. However, they share the same basic architecture. Each succeeding gen-
eration has been designed to be compatible with the earlier versions. This sec-
tion contains an overview of the x86 architecture, which will serve as
background for the examples to be discussed later in the book. Further infor-
mation about the x86 family can be found in Intel (1995), Anderson and
Shanley (1995), and Tabak (1995).

Memory

Memory in the x86 architecture can be described in at least two different ways.
At the physical level, memory consists of 8-bit bytes. All addresses used are
byte addresses. Two consecutive bytes form a word; four bytes form a double-
word (also called a dword). Some operations are more efficient when operands
are aligned in a particular way—for example, a doubleword operand that
begins at a byte address that is a multiple of 4.

However, programmers usually view the x86 memory as a collection of seg-
ments. From this point of view, an address consists of two parts—a segment
number and an offset that points to a byte within the segment. Segments can be
of different sizes, and are often used for different purposes. For example, some
segments may contain executable instructions, and other segments may be used
to store data. Some data segments may be treated as stacks that can be used to
save register contents, pass parameters to subroutines, and for other purposes.

It is not necessary for all of the segments used by a program to be in physi-
cal memory. In some cases, a segment can also be divided into pages. Some of
the pages of a segment may be in physical memory, while others may be
stored on disk. When an x86 instruction is executed, the hardware and the

27



28

System Software

operating system make sure that the needed byte of the segment is loaded into
physical memory. The segment/offset address specified by the programmer is
automatically translated into a physical byte address by the x86 Memory
Management Unit (MMU). Chapter 6 contains a brief discussion of methods
that can be used in this kind of address translation.

Registers

There are eight general-purpose registers, which are named EAX, EBX, ECX,
EDX, ESI, EDI, EBP, and ESP. Each general-purpose register is 32 bits long (i.e.,
one doubleword). Registers EAX, EBX, ECX, and EDX are generally used for data
manipulation; it is possible to access individual words or bytes from these regis-
ters. The other four registers can also be used for data, but are more commonly
used to hold addresses. The general-purpose register set is identical for all mem-
bers of the x86 family beginning with the 80386. This set is also compatible with
the more limited register sets found in earlier members of the family.

There are also several different types of special-purpose registers in the x86
architecture. EIP is a 32-bit register that contains a pointer to the next instruction
to be executed. FLAGS is a 32-bit register that contains many different bit flags.
Some of these flags indicate the status of the processor; others are used to record
the results of comparisons and arithmetic operations. There are also six 16-bit
segment registers that are used to locate segments in memory. Segment register
CS contains the address of the currently executing code segment, and SS
contains the address of the current stack segment. The other segment registers
(DS, ES, FS, and GS) are used to indicate the addresses of data segments.

Floating-point computations are performed using a special floating-point
unit (FPU). This unit contains eight 80-bit data registers and several other
control and status registers.

All of the registers discussed so far are available to application programs.
There are also a number of registers that are used only by system programs
such as the operating system. Some of these registers are used by the MMU to
translate segment addresses into physical addresses. Others are used to con-
trol the operation of the processor, or to support debugging operations.

Data Formats

The x86 architecture provides for the storage of integers, floating-point values,
characters, and strings. Integers are normally stored as 8-, 16-, or 32-bit binary
numbers. Both signed and unsigned integers (also called ordinals) are sup-
ported; 2’s complement is used for negative values. The FPU can also handle
64-bit signed integers. In memory, the least significant part of a numeric value



Background

1.5 RISC MACHINES

This section introduces the architectures of three RISC machines that will be
used as examples later in the text. Section 1.5.1 describes the architecture of the
SPARC family of processors. Section 1.5.2 describes the PowerPC family of
microprocessors for personal computers. Section 1.5.3 describes the architec-
ture of the Cray T3E supercomputing system.

All of these machines are examples of RISC (Reduced Instruction Set
Computers), in contrast to traditional CISC (Complex Instruction Set
Computer) implementations such as Pentium and VAX. The RISC concept,
developed in the early 1980s, was intended to simplify the design of
processors. This simplified design can result in faster and less expensive
processor development, greater reliability, and faster instruction execution
times.

In general, a RISC system is characterized by a standard, fixed instruction
length (usually equal to one machine word), and single-cycle execution of
most instructions. Memory access is usually done by load and store instruc-
tions only. All instructions except for load and store are register-to-register
operations. There are typically a relatively large number of general-purpose
registers. The number of machine instructions, instruction formats, and
addressing modes is relatively small.

The discussions in the following sections will illustrate some of these RISC
characteristics. Further information about the RISC approach, including its
advantages and disadvantages, can be found in Tabak (1995).

1.5.1 UltraSPARC Architecture

The UltraSPARC processor, announced by Sun Microsystems in 1995, is the
latest member of the SPARC family. Other members of this family include a
variety of SPARC and SuperSPARC processors. The original SPARC architec-
ture was developed in the mid-1980s, and has been implemented by a number
of manufacturers. The name SPARC stands for scalable processor architecture.
This architecture is intended to be suitable for a wide range of implementa-
tions, from microcomputers to supercomputers.

Although SPARC, SuperSPARC, and UltraSPARC architectures differ
slightly, they are upward compatible and share the same basic structure. This
section contains an overview of the UltraSPARC architecture, which will serve
as background for the examples to be discussed later in the book. Further
information about the SPARC family can be found in Tabak (1995) and Sun
Microsystems (1995a).

31



32

System Software

Memory

Memory consists of 8-bit bytes; all addresses used are byte addresses. Two
consecutive bytes form a halfword; four bytes form a word; eight bytes form a
doubleword. Halfwords are stored in memory beginning at byte addresses that
are multiples of 2. Similarly, words begin at addresses that are multiples of 4,
and doublewords at addresses that are multiples of 8.

UltraSPARC programs can be written using a virtual address space of
2¢ bytes. This address space is divided into pages; multiple page sizes are sup-
ported. Some of the pages used by a program may be in physical memory,
while others may be stored on disk. When an instruction is executed, the hard-
ware and the operating system make sure that the needed page is loaded into
physical memory. The virtual address specified by the instruction is automati-
cally translated into a physical address by the UltraSPARC Memory
Management Unit (MMU). Chapter 6 contains a brief discussion of methods
that can be used in this kind of address translation. -

Registers

The SPARC architecture includes a large register file that usually contains more
than 100 general-purpose registers. (The exact number varies from one imple-
mentation to another.) However, any procedure can access only 32 registers,
designated r0 through r31. The first eight of these registers (r0 through 17) are
global—that is, they can be accessed by all procedures on the system. (Register
10 always contains the value zero.)

The other 24 registers available to a procedure can be visualized as a win-
dow through which part of the register file can be seen. These windows over-
lap, so some registers in the register file are shared between procedures. For
example, registers r8 through r15 of a calling procedure are physically the
same registers as r24 through r31 of the called procedure. This facilitates the
passing of parameters.

The SPARC hardware manages the windows into the register file. If a set of
concurrently running procedures needs more windows than are physically
available, a “window overflow” interrupt occurs. The operating system must
then save the contents of some registers in the file (and restore them later) to
provide the additional windows that are needed.

In the original SPARC architecture, the general-purpose registers were
32 bits long. Later implementations (including UltraSPARC) expanded these
registers to 64 bits. Some SPARC implementations provide several physically
different sets of global registers, for use by application procedures and by vari-
ous hardware and operating system functions.



Background

Floating-point computations are performed using a special floating-point
unit (FPU). On UltraSPARC, this unit contains a file of 64 double-precision
floating-point registers, and several other control and status registers.

Besides these register files, there are a program counter PC (which contains
the address of the next instruction to be executed), condition code registers,
and a number of other control registers.

Data Formats

The UltraSPARC architecture provides for the storage of integers, floating-point
values, and characters. Integers are stored as 8-, 16-, 32-, or 64-bit binary num-
bers. Both signed and unsigned integers are supported; 2’s complement is used
for negative values. In the original SPARC architecture, the most significant part
of a numeric value is stored at the lowest-numbered address. (This is commonly
called big-endian byte ordering, because the “big end” of the value comes first in
memory.) UltraSPARC supports both big-endian and little-endian byte orderings.
There are three different floating-point data formats. The single-precision
format is 32 bits long. It stores 23 significant bits of the floating-point value, and
allows for an 8-bit exponent (power of 2). (The remaining bit is used to store
the sign of the floating-point value.) The double-precision format is 64 bits
long. It stores 52 significant bits, and allows for a 11-bit exponent. The quad-
precision format stores 63 significant bits, and allows for a 15-bit exponent.
Characters are stored one per byte, using their 8-bit ASCII codes.

Instruction Forinats

There are three basic instruction formats in the SPARC architecture. All of
these formats are 32 bits long; the first 2 bits of the instruction word identify
which format is being used. Format 1 is used for the Call instruction. Format 2
is used for branch instructions (and one special instruction that enters a value
into a register). The remaining instructions use Format 3, which provides for
register loads and stores, and three-operand arithmetic operations.

The fixed instruction length in the SPARC architecture is typical of RISC
systems, and is intended to speed the process of instruction fetching and
decoding. Compare this approach with the complex variable-length instruc-
tions found on CISC systems such as VAX and x86.

Addressing Modes

As in most architectures, an operand value may be specified as part of the
instruction itself (immediate mode), or it may be in a register (register direct

33



System Software

mode). Operands in memory are addressed using one of the following three
modes:

Mode Target address calculation
PC-relative TA = (PC) + displacement {30 bits, signed}
Register indirect TA = (register) + displacement
with displacement {13 bits, signed]}
Register indirect indexed TA = (register-1) + (register-2)

PC-relative mode is used only for branch instructions.
The relatively few addressing modes of SPARC allow for more efficient
implementations than the 10 or more modes found on CISC systems such as x86.

Instruction Set

The basic SPARC architecture has fewer than 100 machine instructions, reflect-
ing its RISC philosophy. (Compare this with the 300 to 400 instructions often
found in CISC systems.) The only instructions that access memory are loads
and stores. All other instructions are register-to-register operations.

Instruction execution on a SPARC system is pipelined—while one instruc-
tion is being executed, the next one is being fetched from memory and
decoded. In most cases, this technique speeds instruction execution. However,
an ordinary branch instruction might cause the process to “stall.” The instruc-
tion following the branch (which had already been fetched and decoded)
would have to be discarded without being executed.

To make the pipeline work more efficiently, SPARC branch instructions
(including subroutine calls) are delayed branches. This means that the instruc-
tion immediately following the branch instruction is actually executed before
the branch is taken. For example, in the instruction sequence

SUB %L0, 11, %L1
BA NEXT
Mov %L1, %03

the MOV instruction is executed before the branch BA. This MOV instruction
is said to be in the delay slot of the branch. The programmer must take this
characteristic into account when writing an assembler language program.
Further discussions and examples of the use of delayed branches can be found
in Section 2.5.2.



